dRRT*: Scalable and Informed Asymptotically-Optimal Multi-Robot Motion Planning

TitledRRT*: Scalable and Informed Asymptotically-Optimal Multi-Robot Motion Planning
Publication TypeJournal Article
Year of Publication2019
AuthorsShome, R, Solovey, K, Dobson, A, Halperin, D, Bekris, KE
JournalAutonomous Robots
Date Publishedaccepted
Abstract

Many exciting robotic applications require multiple robots with many degrees of freedom, such as manipulators, to coordinate their motion in a shared workspace. Discovering high-quality paths in such scenarios can be achieved, in principle, by exploring the composite space of all robots. Sampling-based planners do so by building a roadmap or a tree data structure in the corresponding configuration space and can achieve asymptotic optimality. The hardness of motion planning, however, renders the explicit construction of such structures in the composite space of multiple robots impractical. This work proposes a scalable solution for such coupled multi-robot problems, which provides desirable path-quality guarantees and is also computationally efficient. In particular, the proposed dRRT∗ is an informed, asymptotically-optimal extension of a prior sampling-based multi-robot motion planner, dRRT. The prior approach introduced the idea of building roadmaps for each robot and implicitly searching the tensor product of these structures in the composite space. This work identifies the conditions for convergence to optimal paths in multi-robot problems, which the prior method was not achieving.

URLhttps://www.cs.rutgers.edu/~kb572/pubs/drrt_star_auro.pdf